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PLASTIC DEFORMATION AT THE TIP OF AN EDGE CRACK
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An exact analytic solution of the problem of a crack emerging at the boundary
of a free half-plane, is given for the case when the plastic zone is concentrat-
ed at the extension of the crack (a plastic zone appears in precisely such a form
in such materials as low- C steel [1 —3]. In particular, when the plastic zone
has zero length, we arrive at the problem of stretching of an elastic half-plane
with an edge crack. A general formula is obtained for the stress intensity co-
efficient K;, and the formula yields the results of [4 — 6] as particular cas-
es. An approximate solution of the problem discussed below was constructed
in [7] for a particular case of a constant normal stress Oy at infinity,

1, Formulation of the problem, We consider a plate with an

é edge crack of lengthl. We assume that the plate mat-
1 1& f erial is perfect, elastoplastic, and satisfies the Tresca
— St, Venant condition of plasticity and that the de-

e
p—

formations are small, We represent the crack in the
form of a mathematical cut of zero thickness, For
this reason a plastic region will form at the tip of the
crack when arbifrarily small extemal loads are applied,
and the size of this region will increase with increas-
ing loads. We assume that the plastic deformation is
concentrated along a narrow rectilinear slippage plane
along the continuation of the edge crack,
Let us construct a solution of the following bound-
l l l ary value problem:
é Fig.l 0=+n/2 og=1=0 (1.1)
0=0, 0<r<li, T15=0 (1.2

NS,

0g = —0 ()

0=0, I<rl4d, t19=0, 0g=0,—0 ()

0=0, r>l+d, t9=0, Ougor=20

9==0, [0’9]=[T,.9]=0 (1.3)

reoco, 06g—0, 0,—0, 1—0 (1.9)

Here O¢, Or and T,y are the components of the stress tensor in polar r, .0 -coo-
rdinates; ug and u, are the components of the displacement vector; square brackets
denote a jump in the value of the quantity appearing within these brackets; o, is the
yield point and © (Z) is a given function, In particular, when ¢ (r) = o = const,
we have the problem depicted in Fig, 1.
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2, Derivation of the Wiener—Hopf equation, Apply-
ing the integral Mellin transform

7@ = { f(yrrar

(where p is a complex parameter) to the equation of equilibrium and the condition
of continuity, we obtain [8]
¢

d‘cﬁ* d¥sy 2y ¥
— s TP+ + =1+ @+ 1P —1)ffo* =0 (2.1

The functions 0,* and Tre* can be written in terms of Oo* as follows:

* 1 dog* - 1 disg* . (2.2
T,ga:-.-;:v:-i-—-a-——e s PO, —_—-—-p——i a5 -~ Jg

The solution of (2, 1) has the form (here and henceforth the upper sign is used when
0< 0 <</ 2, and the lower sign when — 71/ 2 < 6 < 0)

0* (p, 8) = C=(p) [cos(p + 1) (5~ F6) —cos (p— 1) (FF0)]+ @9

D2(p) [stap+ 1) (- F9) — SE-sin o~ (F F)]

The unknown functions C=* (p) and D=* (p) are determined from the remaining

boundary conditions.
In accordance with the formfilas (2. 2), (2.3) and the Hooke’s Law, we obtain

0s* (p,8) = C (p) cop (p + 1) (5-TF6) —cos (p — O(FF)| + (2.0
D% (p) [sm (0 + (5 £6) — I;j:i sin (p — 1) (-’2‘- ;e)]

(0.0 = == {C* ) [(p £ Dsin @£ O(FFE) —

(pF 1) sin(@F (5 F8) | F DR+ 1 X
[cos (p+ 1)(5-F0) —cos (0 — 1(+F9) ]}

(S2) = o e —w[-Ccr@sine + ) (7 F0) +

D (p)eos (p + D(5-F9) | + (0 — D (p. O]

When 0 = 0 we have [0¢"] = [1,9*] = 0, T.6* = O, and this implies

- Cr (2.9
C*=C, D*=D", D*=—-Fecig-h-
From (2. 4) and (2. 5) we obtain
2C*  pt—sin® pu/2 (2. 8)

6" (P, 0) = — pd—1 sinpRig
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/ Bue *

\ ar
Eliminating from (2, 6) the function ct (p) and taking (1. 2) into account, we arrive
at the inhomogeneous Wiener — Hopf equation

" (p) =K (p)G(p) (1 + ) [Q (p) + D* (p)] (2.7)

_ 4 —w)  2ct P
o= FRE-TSPT

where

1
_ E dug (It -+ dt, 0)
O (p)=— 4(1__\,2)8[ ot :l

0

trdt
=0

n

K (p)=ctgp—

sin2 pm/2

O (p) = Sae (it + dt,0)t7dt, G(p) = ~ramg
1

Q(P)= (1 +_;i_)—(p+1){_}_)_:f_1_|:(1 +_%_)p+1__ 1]_
1+d/l
S o(lt)tht}

(]

3, Solution of the boundary value problem. The fun-
ctional equation (2, 7) exists in the strip — 1 <C Re p << 0, — oo << Im p << 0.
The function G (p) can be written in the strip — 1 << Re p << 0, — o0 < Im
p << oojn the form [9]

G+
G(p) = G_EB (3.1
aZ+ico
+ 1 -
G2 =exp [ | BEU @] (1< <Rep < <O)

Here G* (p) and G~ (p) are entire function, analytic and without zeros in the reg-
ions Re p<C0and Rep >> — 1 respectively. Both functions tend to unity at
infinity, We shall write the function K (p) in the form [10]

K (p) = 2p7K* (p)K~ (p), Kt (p)=T (A Fp2)/T (Y, Fpl2) 3.2
Factorizing (3. 2) and (3. 1), we can write the functional equation (2. 7) as follows:

B0 (p) = 2L g () 6* (PO (p) + Q ()] (3.9

Consider the function
¢ (p) = p'K* (p) G* (p) Q (p)
Let the function @ (p) possess the following properties [10}:
(a) be analytic and regularin the strip — 1 << a" < Rep < a* < 0, — o0 <
Im p << o, and
®)|e@)|<A4|Imp|*(e>0) a |Imp]|— oo, with the inequality
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holding uniformly forall Re p inthestip a” + e<< Rep <at —e¢,
e > 0.
Thenwecanwntethefunction 9 (p) in the strip —1 << a™ << a;" < Re p <<
it <<at < U, |Imp|< oo intheform
a,i-{-—im (3 4)
= ot (D) — o £(p) — 1 ? () )
P(@) =9 () — 0" (), 9E(P) = oo iS T
The functions @* (p) and ¢~ (p) are regular and have no zeros in the regions Re
p<<a;* and Re p >> a,” respectively, Substituting (3.4) into (3. 3), we obtain
G - -~
K-((’;,)) O (p)+2(+d) o (p) = (3.5)
22D g () ¢ (P O () + 20+ Do ()

This yields, in accordance with the properties of the functions G+ (p), K* (p), ®=*
(P) and o (p),
iy Pe* (p) - 9~ (p) K~ (p)

D (p) = — K*(0) G (p) ' @ (p)=°2(l+d) T—‘(p)——- (3.6)
Using now (2. 6) we determine the function C* (p), find the Mellin transform of
the stresses in question, and inverting the transform, the stresses themselves, Next
we shall consider some particular cases of the general solution (3. 6).

Case of constant load, Letthe function o (z) be constant: ¢ (z) =
¢ = const (see Fig.1), We also have

Q1= 11— (]

We can write the functions ¢* (p) and ¢~ (p) in accordance with the properties of
the Cauchy-type integrals, in the form

et (p) = ;;%;——.—17 K*(p)G™(p) [l +—§7V:%%7(+—(;};)-} — 557" (p) (3.7
V=G+ (— 1
P (P)=(5:—9) —5'(-};-_&-1-,—)——55?‘ (p)
where
a.:lt—f-ico
+ " K+ (t) Gt (t) dt (3. 8)
vE(p) = 5 T+ )(L+d/y*t t—=p
(l1 —_ 100

To find the quantity d , we consider the function

o0

o*(p) = Sce [({ +4d)t, O] tPdt
1

(3.9

From this, using the condition

Ky
sol@+d)t, 0] =

Var(i+d)yt—1)
we find, according to an Abel-type theorem,

(= +1+0)
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K,
T P e — (3. 10)
(p) V=titd0r (p— o)
On the other hand, when p — o , we have from (3, 6) and (3,7)
E 5 (4]t (3. 11)
ot (p)= [V—(G—G)G*(—i)——Vch - === ’
7o —o #(7) jy=
af +ico
T, BB 4 {* K+ (N n+ (i 4
a4yt K*(@) Gt () dt
\T)=m ) Tern aren®
a, —ito

The conditions of boundedness of the stresses at the tip of the plastic line yield the
relation _
Va

7o = (5= 1) = (T)

and Fig, 2 depicts the dependence of d/! on o/ o

, L vy
a/t
z a6
7 \
, /s 12
ay a8 g y 8 tfds
Fig. 2 Fig, 3

Opening of the crack is of interest from the point of view of the fracture mechan-
ics, This is determined from the formula

x duy (3.12)
vy = S T e=_-_0dr
d+1
where
du du, \¥
8 1 S 8 .
[?:He=o=2—m'l, [( or )]&mrpldp (3.13)
(L: a;” < Rep = ¢ < g4, — o0 <Imp < o0)
In accordance with the second formulas of (3. 6), (3.7) and (3. 13) we find
du 8(1 — P - (3.14)
[ : e” S g (K
or | le=o E 2mi 7 (r+1)G~(p)

. -
[(';,j - 1) ‘;ﬂ GH—D+(p+1)v (p) ] r P ldp
Substituting (3, 14) into (3, 12), we obtain
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8(1—2) 6 G*(—1) 2y (0)— VaG+(—=1
N=""F ““(l+d){2 G'(O)+H2)Vna~(0)( s

3%? é (’lz")p Up_(:)dﬁf ?)p GIE_( ;,I;) [(p +1y(p) +¢ (T)]dp } (20

At the tip of the crack (where z = ) its opening is given by

dy d s G*(—1) Va

T ="(1 +T )l 5, 3C-(0) +(o, ‘1)TG*(~1)X
1 S (1+d/)°K~(p) t S(1+d/z>”K~(p)
M) PPINC (P PT I ) pe(p ¥ (PPt
2y~ (0)— VrG*(—1) (d 7By
2 V'R G-(0) *“8(1—3)0.)

Figure 3 shows the dependence of the function s/ss on {/d,. Let d=0. In
this case

g0)=—2% Va6 (-1 (3.15)
We note that the function G* (—1) can be calculated with any prescribed degree  of
accuracy. For example, computing the value of G* (—1) to the sixth decimal place
yields G+ (—1) = 1.121524.
Substituting the expression (3,15) into (3, 11) and equating two asymptotics of the
function @+ (p) when d = 0, we obtain the stress intensity coefficient
Ki=sValGr(—1)
The above result coincides with the known expression (see e. g. [4,6]). In particular,
we can also determine the opening of the crack
4 (1 —w®) - 1
g = ———— ol Gt (=) |~
%o 5 ol VG )[ Vae-© T
1 C(L\»__ K=(p)
pET § (< ) VE IR “’P] (z+0)
Case of a linear load, Letthe function o(z) have the form

Co— &
G(x)=35-+0 *c

Here 0, 0z and ¢4 are given constants. In this case we have
1 _ L \e1] | (it d)
Q(P)=m[(ss—cx—uz)—cs(m) } Fo P ED

The functions @* (p) and ¢~ (p) now become, in accordance with the theory of the
Cauchy-type integrals,

S, — Oy — N . [ VﬂG"‘(—i)] (3.16)
¥ () =g K )6+ )| + T o)
cz(l-{-d)K"(p)G*(p)[ + pG*(—2) ] 0.7 (7)
PP +2)cx VR K*(p)G*(P) %
(6, —o1— ) V'r L ml+d) 6=
@O = —3pTn It T YR e o P
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Substituting (3, 16) into (3, 6), we obtain

o °1+52—°.[ pﬁa+(—1)] (3.17)
(P)=—"77F7 2£*(p)G*(p) 1
o3 (l +d) . pG* (—2) S, PY" (P)
c*(p+2)[ + VRK+(p)G+(p)] K*(p)G*(p)
x-
<D‘(p)=2(l+d)5,-a?%)v‘(p)—
(6, —a—o) VaG*(—1) 26, (1 +dRGH(—2)
G+ (P+1) 6 (p) K (”)—c.,(p-;-z)ﬁa-(p)K @

The quantity 4 is determined using the method given in the previous example,

ato NV sa(l+d) a
<-—6‘———1)TG+(—1)—WG+(“2)=g(l—)

Let d=0 and ¢4 = ! (Koiter's problem [4]). Let us obtain the stress intensity
coefficient X;, This, in accordance with (3,17) and (8. 10) has the form

Ky=(61402) Val G*(— 1) — 25, V—:; Gt (—2) (3. 18)

Substituting the numerical values obtained for the functions G+ (—1) and G+ (—2)
on a digital computer into (3, 18), we obtain

Ky =(1.12155, + 0.4391 o) V7

which agrees with the result given in [4].
Case of an arbitrary,symmetrical normal load.Let
d = 0. The stress intensity coefficient is given, according to the formulas (3. 6) and

(3.10), by a4
V2 K+ ()
T S

1
7 Gt (t)S o (lt)v! dvdt (3.19)
[1]

K 1=
ayt—ioo

Formula (3. 19) yields the results of [4 — 6] et al. (see [1]) as particular cases,
Let now d=0. In this case we have the following formula for determining d :

ayt4ico

5,V 1
3G (=) + 5 S
Q

gt i

+d /1

1

%
ESiULaU) S s(lt)yttdrdt = —seg ({:—)
0

LSt d/t

The author thanks G, P, Cherepanov for the assessment of this paper.
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