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An exact analytic solution of the problem of a crack emerging at the boundary 
of a free half-plane, is given for the case when the plastic zone is concentrat- 
ed at the extension of the crack (a plastic none appears in precisely such a form 
in such materials as low- C steel [l -31. In particular, when the plastic zone 
has zero length, we arrive at the problem of stretching of an elastic half-plane 
with an edge crack. A general formula is obtained for the stress intensity co- 
efficient R, , and the formula yields the results of [4 - SJ as particular cas- 
es. An approximate solution of the problem discussed below was constructed 
in iJ7] for a particular case of a constant normal stress ou at infinity. 

l. Formulation of the problem, Weconsideraplatewith an 

c; edge crack of lengthl. We assume that the plate mat- 

1 
! tf 

erial is perfect, elastoplastic, and satisfies the Treaca 
J’ - St. Venant condition of plasticity and that the de- 

formations are small. We represent the crack in the 
form of a mathematical cut of zero thickness. For 
this reason a plastic region will form at the tip of the 
crack when arbitrarily small external loads are applied, 
and the size of this region will increase with increas- 
ing loads. We assume that the plastic deformation is 
concentrated along a narrow rectilinear slippage plane 
along the continuation of the edge crack. 

, 

Ill 

Let us construct a solution of the following bound- 
ary value problem: 

d Fig. 1 e =fn/2, ofj=‘6&l=o (1.1) 
e=o, ocr(z, 7ti=o (1. 2) 

oe = --(T (z) 
e-o, z<r<z+a, ~~~~0, ~e--~8-~(2) 
e = 0, r>z +a, fre = 0, au,jar = 0 
8 = 0, [afj] = [z,eI = 0 (1.3) 

r-3 00, cJ@--*O, cr,--*o, z,e--,o (1.4) 

Here Qe, or and ‘Cm are the components of the stress tensor in polar r-, .e -coo- 
rdinates; ua and u, are the components of the displacement vector; square brackets 
denote a jump in the value of the quantity appearing within these brackets; o, is the 
yield point and o (Z) is a given function. In particular, when o (z) = o = const, 
we have the problem depicted in Fig. 1. 
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2. Derivation of the Wiener-Hopf equation. Apply- 
ing the integral MeUn transform 

f* @) = 5 f (r) rpdr 

(where p is a complex parameter) to L equation of equilibrium and the condition 
of continuity, we obtain [8] 

.-$$- + [(p + 1)s + (p - 1)2] s i_ ($I + 1yQ.I - I)2 CT** = 0 (2.1) 

The unknown functions c* (P) and D* (p) are determined from the remaining 
bamdary condfffoar. 

In accordwe with the formfiUs(2. 21, (2.3) and the Hooke’s Law, we obtain _ 

m* (p, 0) =c*(P)[co~~P+1~(~Fe)-~~P-I~(~~~)] + (2.4) 

D*(P) [sin (P + ~~(+lt~) - *sin (p - 1) (+ TO)] 

&@,f)) = -+y- (Cr@f[tp~1)sin(pF1)(~se) - 

(PF1)sin(p+l)(~i8)]TDr(P)(P+1) x 

[WP+~~(+Fe)-cos(p- 1)(+3j]} 

D”(p)cos(p + i)(-+)] -t- (P - 1)&P, e,} 

whu, 8 = 0 we have [ue*] = [r,e*‘j = 0, z,e* = 0 , and this impiles 

CC -91 c-, D’ = D-, I)+ = 
(2.51 

From (2.4) and (2.5) we obtain 

Csg* (p, 0) I - so @;i;;;p”‘” (2.6) 
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Eliminating from (2.6) the function c+ (p) and taking (1.2) into account, we arrive 
at the inhomogeneous Wiener - Hopf equation 

o- (JJ) = K (~1 G (P) (1 + 4 [Q (P) + @+ (p)l (2.3 

where 
l 

Q-(P) = - 4 (*:_ $) s [ arrR (It + a, 0) 
at II tpdt 

e=o 
0 

R (p) = ctg p + 

<B+ (p) = 1 cre (It + dt, 0) tm, G(P) = 
sin2 pnj2 

sin2 pax;2 - p2 
1 

Q (P) = (1 + f) -@+I){-& [ (1 + _g+1 - I] - 

l+W 

$ (J (It) tpdt 
0 

3. Solution of the boundary value problem. Thefun- 
ctional equation (2.7) exists in the strip - 1 < Re p ( 0, - oo ( Im p < w. 
The function G (p) can be written in the strip - 1 < Re p < 0, _ o. c Im 
p < ooin the form [9] 

G+ (~1 
G(P) = - G- (~1 

(3.1) 

a*+iCO 

G*(p) = ex&L s 
af-ico 

‘;“;’ dt] (- 1 <a<Rep<u+<O) 

Here G+ (p) and G- (p) are entire function, analytic and without zeros in the reg- 

ions Re p < 0 and Re p > - 1 respectively. Both functions tend to unity at 

infinity. We shall write the function K (p) in the form [lOI 

K (p) = 2p-‘K+ (p)K’ (p), K* (p) = r (1 =F p/2) / I? (‘12 =F p/2) (3.2) 

Factorizing (3.2) and (3.11, we can write the functional equation (2.7) as follows: 

*@-(p)= ““_$!l K+(P) G+ (P)P+ (P) + Q (p)l (3.3) 

Consider the function 

cp (P) = P-‘K+ (P) G+ (P) Q @) 

Let the function cp (p) possess the following properties [lOI 
(a) be analytic and regular in the strip - 1 ( a- < Re p < a+ ( 0, - 00 < 

Imp<=,and 

(b) I cp b) I C A I Im p 1-a (a > 0) as 1 Im p 1 --t co, with the inequality 
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holding uniformly for all Re p in the strip a- + e < Re p < u+ - e, 
e > 0. 

Thenwecanwcitethefunction V(P) inthestrip-l<a-<a,‘(ReP( 
a~+ <, a+ < 0, 1 Imp I< 00 in the form 

cp@) = V’(P) -cp’(P)9 cp”(P) = -&- $ -++ 
(3.4) 

a,*--ica 

The functions Cp+ b) and rp- @) are regular and have no zeros in the regions Re 
p < OX+ and Re p > a,- respectively. Substituting (3.4) into (3.3). we obtain 

+$#- a- (P) + 2 v + 4 cp- (P) = (3. 5) 

2 (‘pf d, K+ (p) G+ (p) @+ (p) + 2 (I + d) v+ (P) 

This yields, in accordance with the properties of the functions Gh @), K* (p), Ok 
@I and cp* @I, 

a+(P) = - KfP;Sp; (cp!@) ( 
m- (p) = - 2 (I + d) vy; (4 (3.6) 

Using now (2,6) we determine the function Cf @), find the Mellin transform of 
the stresses in question, and inverting the transform, the stresses themselves. Next 
we shall consider some particular cases of the general wlution (3.6). 

C a s e o f 5 o n s t a n t 1 o a d. Let the function u (z) be constant: (I (z) = 
u = con& (see Fig. 1). We also have 

Q b) = & [% - 5 - 5s (&)p+l] 
We can write the functions ‘p+ (p) and cp- @) in accordance with the propurties of 
the Cauchy-type integrals, in the form 

p )/Rc+ (- i) 

2K+ (P) c+ (PI I 
- %Y+ (P) (3.7) 

where 
f al +iw 

y*(P) = & 

. . 

I 

K+ (t) G+(t) dt 

a?- iw 
t(tfl)(l +d/l)‘+’ t--P 

To find the quantity d , we consider the function 

Q+ (p) = fae [(J j-d) t, O] tPdt 
1 

From this, using the co&MOn 

68 [(E + d) t, 01 = 
KI 

)/2n(I+d)(t--i) 
0 - + 1 f 0) 

we tid, according to an Abel-type theorem, 

(3.8) 

(3.9) 
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KI 
@‘(P) = 1/_2(z+d)p (P--J) (3.10) 

on the other hand, when p - 03 , we have from (3.6) and (3.7) 

a:+i.X 
K+(t) C’ (t) dt 

a+-u 
t (t + 1) (1 + d/Z)'+' 

The conditions of boundedness of the stresses at the tip of the plastic line yield the 

relation 

&(-i)(+)+) 

and Fig. 2 depicts the dependence of d I 1 on u / u, 

u 4 8 u&t 

Fig. 2 Fig. 3 

Opening of the crack is of interest from the point of view of the fracture mechan- 

ics. This is determined from the formula 

(3.12) 

( 3.13) 

(L: ul- < Rep = c < aI+, - 00 <Imp < 00) 

In accordance with the second formulas of (3.6), (3.7) and (3.13) we find 

8(i--)a,(d+I)& 
(3.14) 

E 
x 

[(+*pg G+(--l)+(P+1)Y-(P) r-P-l+ 3 
Substituting (3.14) into (3.12). we obtain 
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S(l-9) 
f)o = %(I td) ( 

o P(-i) 

E 2G, C-(O) -I- 
Z?-(O)- Vzc+(-i) 

2 I/src- (0) :- 

&j (+)I’ (l+d’z)PK-(p) [(p+Wp)+g(~)]dp} p(p+i)G-(p) (z # 01 

At the tip of the crack (where I = 1) its opening is given by 

+“(*i-.+) ig~+(+)qG+(_l)x 
1 21ri (1 +dl4"KW ,,_lPldp+ 

PC- (P) 

2y (0) - VT%+ (- 1) 

2 JmP(O) I ( 
d*= 8(1- -E:, as I 

Figure 3 shows the dependence of the function Q Is, on 1 Id, . Let d = 0. In 
thiSCaSe 

g (0) = - l:‘2 )/;G’ (- 1) (3.15) 

We note that the function G+ (-1) can be calculated with any prescribed degree of 
accuracy. For example, computing the value of G+ (--1) to the six? decimal place 
yields G+ (A) = 1.121524. 

Substituting the expression (3.15) into (3.11) and equating two asymptotics of the 

function cl)+ (p) when d = 0, we obtain the stress intensity coefficient 

ZiI=~ )/zG+(-I) 

The above result coincides with the known expression (see e. g. L’4.61). In particular, 

we can also determine the opening of the crack 

4 (I - vq 
co = 

E 

1 S( 1 1 P K- (PI 
2ni-T p (p + i) G-(p) dp 1 (=iO) 1. 

Case of a linear load. Let the function (I (I) have the form 

a@)=$&$ 

&re oi, a, and c, are given constants. In this case we have 

me functions ‘p+ @) and cp- @) now become, in accordance with the theory of the 

Cauchy-type integrals. 

Q8 - %- 52 
‘p+(P) - P(P + 1) 

a~(1 + d) K+ (P) G+ (~1 
ptP+Vc* 

(3. 16) 

cp- (P) = 
@,--a,---a31/~ G+(_l) , %(t+d)G+(-2) 

2tp-i I) 
T )/ztp + 2) e* - 6s f (p) 
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Substituting (3.16) into (3.6). we obtain 

Q+(p)= 
=1+ =2 - 0, P Gc+(- 1) 

Ps-1 * + 2K+ (p) G+(p) - I 
cs(J +d) 
c* (P + 2) I + I 

pc+ (- 2) 1 0, PVT (P) 

~;K+(P)c+(~) + Kf(p)G+(P) 

(P-(P)=2(z+d)a, -$+ Y_(P)- 

(3.17) 

(1 + 4 
(=a - =1- 02) )/a+(- 1) 

K- (P) - 
2a2V+d)aC+(-22) 

(P+ 1) G-(P) c, (p + 2) fiG-(p) K- (” 

The quantity d is determined using the method given in the previous example, 

a,+ =2 
--I 

oa 
G+ (_ 2) = g (+) 

Let d = 0 and C* = r (Koiter’s problem [4] ). Let us obtain the stress intensity 

coefficient K,. This, in accordance with (3.17) and (3.10) has the form 

K, = (or + ~2) I'-% G+ (- 1) - 25, 1/ ; G+ (- 2) (3.18) 

Substituting the numerical values obtained for the functions G+ (A) and G+ (-2) 
on a digital computer into (3.18)‘ we obtain 

K, = (I.121501 + 0.4391 os) I/ni 

which agrees with the result given in [4]. 

Case of an arbitrary, symmetrical normal load.Let 
d = 0. The stress intensity coefficient is given, according to the formulas (3.6) and 

(3. JO), by 

Vi- 
a1++im 1 

K,=-- 
s 

q G+ (t) s a(k)+ d,cdt (3. 19) 

aI+-iw 0 

Formula (3.19) yields the results of [4 - 63 et al. (see [l] ) as particular cases, 
Let now d # 0. In this case we have the following formula for determining d : 

=, v/R 
al++im l-cdl1 

~-c+(-I)+& s K+ (t) G’(t) 

=,+__im t (1 + d/l)‘+’ 

. . 

S a(Zr)z’drdt= -ssg 

0 

The author thanks G. P. Cherepanov for the assessment of this paper. 
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